

# SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

#### **OUESTION BANK (DESCRIPTIVE)**

**Subject with Code:** Electronic Measurements

&Instrumentatin (18EC0413) **Year & Sem:** III-B.Tech & I Sem

Course & Branch: B.Tech - ECE

**Regulation:** R18

# UNIT –I PERFORMANCE CHARACTERISTICS OF INSTRUMENT

| 1  | a What is the difference between accuracy and precision of measurement?                            | [L2] [CO1]   | [2M]             |
|----|----------------------------------------------------------------------------------------------------|--------------|------------------|
|    | b Define speed of response and fidelity.                                                           | [L2] [CO1]   | [2M]             |
|    | c State the limitations of thermocouples.                                                          | [L1] [CO1]   | [2M]             |
|    | d Define sensitivity and resolution.                                                               | [L1] [CO1]   | [2M]             |
|    | e List the salient features of voltage ohm meter.                                                  | [L1] [CO1]   | [2M]             |
|    | a) Explain the construction of multi-range voltmeter & Range extension DC                          | [L2] [CO2]   | [5M]             |
|    | voltmeter.                                                                                         |              |                  |
| 2  | b) A D'Arsonval movement with a full-scale deflection current of 50 µA and                         | [L6] [CO2]   | [5M]             |
|    | internal resistance of $500\Omega$ is to be converted into a multirange voltmeter. Define          |              |                  |
|    | the value of multiplier required for 0-20V, 0-50V, 0-100V.                                         | [] 2][[] (1] | [5] [1]          |
| 2  | a) Explain different types of errors that occur in measurements.                                   | [L2][CO1]    | [5M]             |
| 3  | b) Explain about Differential type voltmeter.                                                      | [L2] [CO2]   | [5M]             |
| 4  | a) How do we determine the performance characteristics (static & dynamic) of an instrument?        | [L2] [CO1]   | [7M]             |
| 4  | b) Explain the process of calibration.                                                             | [L2] [CO1]   | [3M]             |
|    | a) Define sensitivity. Calculate the sensitivity of a 200 µA meter movement which                  | [L4] [CO1]   | [4M]             |
| 5  | is to be used as a dc voltmeter.                                                                   |              | [4141]           |
|    | b) Draw and explain solid state DC Voltmeter.                                                      | [L2] [CO2]   | [6M]             |
|    | a) With neat sketch explain thermocouple type RF ammeter.                                          | [L2] [CO2]   | [5M]             |
| 6  | b) Explain the fundamental principle of AC voltmeter.                                              | [L2] [CO2]   | [5M]             |
|    | a) Explain with the help of circuit diagram, the construction & working of a series                | [L2] [CO2]   | [5M]             |
| 7  | type ohm meter.                                                                                    |              |                  |
|    | b) Discuss about basic DC Ammeters.                                                                | [L2] [CO2]   | [5M]             |
| 8  | Explain how a multi-meter can be used as a) DC voltmeter & AC volt meter                           | [L2] [CO2]   | [10M]            |
|    | b) DC ammeter & ohmmeter.                                                                          | [[ 2] [CO2]  | [ <b>5</b> ] [1] |
|    | a) Explain with the help of circuit diagram the construction & working of a series type ohm meter. | [L2] [CO2]   | [5M]             |
|    | b) A shunt type ohmmeter uses a5 mA basis D'Arsonval movement with an                              | [L6][CO2]    | [5M]             |
| 9  | internal resistance of $50\Omega$ . The battery voltage is 3V.It is desired to modify the          | [L0][CO2]    |                  |
|    | circuits by adding appropriate shunt resistance across the movement.so that the                    |              |                  |
|    | instrument indicates $5\Omega$ at the midpoint scale. Calculate: i) The value of shunt             |              |                  |
|    | resistance. ii) Value of current limiting resistance R1.                                           |              |                  |
|    | a) Explain about static characteristics of measuring instrument.                                   | [L2] [CO1]   | [5M]             |
| 10 | b) Define the terms in dynamic characteristics i) Speed of Response ii) Fidelity                   | [L2] [CO1]   | [5M]             |
|    | iii) Lag.                                                                                          |              |                  |
| Ь  | /9                                                                                                 |              | <u> </u>         |

|    | a) What are the different dynamic characteristics of an instrument. | [L2] [CO2] | [5M] |
|----|---------------------------------------------------------------------|------------|------|
| 11 | b) Explain about multirange AC voltmeter.                           | [L2] [CO1] | [5M] |

### UNIT -II OSCILLOSCOPES

|    |                                                                                        | ı         |       |
|----|----------------------------------------------------------------------------------------|-----------|-------|
| 1  | a Mention the standard specifications of a simple CRO.                                 | [L1][CO2] | [2M]  |
|    | b Mention various applications of CRO.                                                 | [L1][CO2] | [2M]  |
|    | c What is the principle of CRO?                                                        | [L1][CO2] | [2M]  |
|    | d Differentiate between dual beam and dual trace CRO.                                  | [L1][CO2] | [2M]  |
|    | e State the need of a time base generator.                                             | [L1][CO2] | [2M]  |
| 2  | a) Discuss about important CRT features.                                               | [L2][CO3] | [4M]  |
|    | b) Draw the block diagram of a dual beam CRO, explain its operation.                   | [L4][CO3] | [6M]  |
| 3  | a) State the various applications of an oscilloscope.                                  | [L2][CO3] | [5M]  |
|    | b) Explain the function of trigger circuit.                                            | [L2][CO3] | [5M]  |
| 4  | a) Explain with the block diagram how the digital frequency and time period can be     | [L2][CO3] | [5M]  |
|    | measured using counter/meter instrument.                                               |           |       |
|    | b) What are the different types of CRO probes?                                         | [L1][CO3] | [5M]  |
| 5  | Draw the block diagram of a general-purpose oscilloscope (CRO) and explain             | [L4][CO3] | [10M] |
|    | function of each block.                                                                |           |       |
| 6  | a) Explain the major parts of CRT with a block diagram.                                | [L2][CO3] | [5M]  |
|    | b) Explain Two electron beam (dual beam) CRO.                                          | [L3][CO3] | [5M]  |
| 7  | a) Draw the block diagram of Delay line circuit and explain its working.               | [L2][CO3] | [5M]  |
|    | b) With neat sketch explain about vertical amplifier.                                  | [L6][CO3] | [5M]  |
| 8  | a) Discuss in detail, the construction and working of a Trigger sweep generator.       | [L2][CO3] | [5M]  |
|    | b) Explain with a diagram how phase can be measured using a Lissajous method           | [L3][CO2] | [5M]  |
| 9  | a) Explain with a diagram how frequency can be measured using a Lissajous method.      | [L2][CO2] | [5M]  |
|    | b) Briefly discuss about dual trace CRO.                                               | [L2][CO3] | [5M]  |
| 10 | a) Draw the neat diagrams of horizontal deflection systems and explain briefly about   | [L2][CO2] | [6M]  |
|    | their working.                                                                         |           |       |
|    | b) State the standard specifications of a sample CRO.                                  | [L2][CO3] | [4M]  |
| 11 | a) Describe in details the construction and working of a digital storage oscilloscope. | [L2][CO3] | [5M]  |
|    | b) Construct delayed line sweep circuit and explain its operation.                     | [L6][CO3] | [5M]  |

### UNIT –III SIGNAL GENERATORS

| 1  | a Define the basic operating principle of signal generator.                          | [L1][CO3] | [2M]  |
|----|--------------------------------------------------------------------------------------|-----------|-------|
|    | b Mention the applications of function generator.                                    | [L1][CO3] | [2M]  |
|    | c State the principle of heterodyne wave analyser.                                   | [L1][CO3] | [2M]  |
|    | d Mention the applications of wave analyser.                                         | [L1][CO3] | [2M]  |
|    | e State the principle of basic sine wave generator.                                  | [L1][CO3] | [2M]  |
| 2  | a) With the help of block diagram explain the functioning of a conventional standard | [L2][CO3] | [5M]  |
|    | signal generator.                                                                    |           |       |
|    | b) Write about fixed AF oscillator and variable AF oscillator.                       | [L2][CO3] | [5M]  |
| 3  | a) Draw the block diagram of a function generator and explain its operation.         | [L4][CO3] | [5M]  |
|    | b) List the applications of random noise generator.                                  | [L1][CO4] | [5M]  |
| 4  | With a neat diagram discuss the operation of a pulse generator.                      | [L4][CO4] | [10M] |
| 5  | a) Discuss in detail about pulse generator.                                          | [L2][CO4] | [5M]  |
|    | b) Explain the method of generating Random noise.                                    | [L2][CO4] | [5M]  |
| 6  | a) Explain the working of a standard sweep generator with diagram.                   | [L2][CO4] | [5M]  |
|    | b) What is sweep generator? Explain in detail.                                       | [L2][CO4] | [5M]  |
| 7  | a) With help of a neat sketch, explain the working of any one of wave analyzer.      | [L2][CO4] | [5M]  |
|    | b) What is the function of wave analyzer?                                            | [L2][CO4] | [5M]  |
| 8  | a) Describe with diagram the operation of a Logic analyzer.                          | [L2][CO4] | [5M]  |
|    | b) List the application of wave analyzers.                                           | [L1][CO4] | [5M]  |
| 9  | a) Draw the circuit diagram and explain the working of a spectrum analyzer.          | [L2][CO4] | [5M]  |
|    | b) What is distortion? What does a distortion analyzer measure?                      | [L2][CO4] | [5M]  |
| 10 | a) What is the function of harmonic distortion analyzer?                             | [L2][CO4] | [5M]  |
|    | b) Describe the diagram with operation of a harmonic distortion analyzer using Wein  | [L2][CO4] | [5M]  |
|    | bridge and frequency selective type.                                                 |           |       |
| 11 | a) With a neat sketch explain the operation of arbitrary waveform generator.         | [L2][CO4] | [5M]  |
|    | b) What are the different specifications of arbitrary waveform generator?            | [L2][CO4] | [5M]  |

### UNIT –IV REVIEW OF DC & AC BRIDGES

| 1  | a What is a bridge? What is the importance of a bridge?                                                            | [L1][CO4] | [2M]  |
|----|--------------------------------------------------------------------------------------------------------------------|-----------|-------|
|    | b What is the balance condition for a basic kelvin bridge?                                                         | [L1][CO4] | [2M]  |
|    | c What is meant by q-meter?                                                                                        | [L1][CO4] | [2M]  |
|    | d Draw the circuit of Kelvin's Double Bridge.                                                                      | [L1][CO4] | [2M]  |
|    | e What are the different errors occurred in bridges?                                                               | [L1][CO4] | [2M]  |
| 2  | a) Discuss the working principle of Q-meter &its applications.                                                     | [L2][CO3] | [5M]  |
|    | b) Write short note on interference & explain noise reduction techniques.                                          | [L2][CO6] | [5M]  |
| 3  | Explain any Two ac bridges to measure unknown Inductance.                                                          | [L2][CO5] | [10M] |
| 4  | Explain the operation of Kelvin Bridge and derive necessary equation.                                              | [L2][CO5] | [10M] |
| 5  | What is the function of bridge? Draw the Anderson's bridge circuit and derive necessary equations& explain it.     | [L2][CO5] | [10M] |
| 6  | a) Explain the Schering bridge circuit &its applications.                                                          | [L2][CO5] | [5M]  |
|    | b) An A.C bridge as the following constants Arm AB-capacitor of $0.1\mu F$ in parallel                             | [L6][CO5] | [5M]  |
|    | with $2K\Omega$ resistor, Arm AD-resistance of $5K\Omega$ , Arm BC capacitor of $0.25~\mu F$ , Arm                 |           |       |
|    | CD-unknown capacitor CX and RX in series f-2KHz.Determine the unknown                                              |           |       |
|    | capacitance and dissipation factor.                                                                                |           |       |
| 7  | a) Explain how a Maxwell bridge can be used for measuring an unknown inductance.                                   | [L2][CO5] | [5M]  |
|    | b) What is interference & explain noise reduction techniques.                                                      | [L2][CO6] | [5M]  |
| 8  | Describe the operation of the Wheatstone bridge & derive the expression for current when the bridge is unbalanced. | [L2][CO5] | [10M] |
| 9  | a) Explain how a Maxwell bridge can be used for measuring an unknown inductance.                                   | [L2][CO5] | [5M]  |
|    | b) A Maxwell bridge is used to measure an inductive impedance the bridge constants                                 | [L6][CO5] | [5M]  |
|    | at balance are C1=0.01 $\mu$ F, R1=470K $\Omega$ , R2=5.1 K $\Omega$ and R3=100 K $\Omega$ . Find the series       |           |       |
|    | equivalent of the unknown impedance.                                                                               |           |       |
| 10 | a) What are the applications of Wheatstone bridge? And list out its limitations.                                   | [L4][CO6] | [5M]  |
|    | b) Describe the operation of the Wheatstone bridge and derive the expression for                                   | [L2][CO5] | [5M]  |
|    | DC resistance.                                                                                                     |           |       |
| 11 | a) Describe in detail about EMI &EMC with suitable examples.                                                       | [L2][CO3] | [5M]  |
|    | b) Explain the working principle & operation of Capacitance & Inductance bridge circuit.                           | [L2][CO5] | [5M]  |
|    | CHCUIL.                                                                                                            |           |       |

#### UNIT –V SENSORS AND TRANSDUCERS

| 1  | a Define sensor and transducers.                                                           | [L1][CO5] | [2M]  |
|----|--------------------------------------------------------------------------------------------|-----------|-------|
|    | b Mention the disadvantages of LVDT.                                                       | [L1][CO5] | [2M]  |
|    | c What is the basic principle involved in piezoelectric transducers?                       | [L1][CO5] | [2M]  |
|    | d Name one passive and active sensors.                                                     | [L1][CO5] | [2M]  |
|    | e What are the merits & demerits of Thermocouple?                                          | [L1][CO5] | [2M]  |
| 2  | With a neat sketch explain the operation of LVDT. What are the advantages & disadvantages? | [L1][CO5] | [10M] |
| 3  | Explain strain gauge for resistance measurement & its applications.                        | [L2][CO5] | [10M] |
| 4  | a) What are the differences between the active & passive transducers?                      | [L2][CO5] | [5M]  |
|    | b) Explain the operation of potentiometric transducer.                                     | [L2][CO5] | [5M]  |
| 5  | a) Define a transducer.                                                                    | [L1][CO5] | [3M]  |
|    | b) Explain about any one of transducer to measure displacement.                            | [L2][CO5] | [7M]  |
| 6  | a) Draw the diagram of Resistance Thermometer & explain briefly.                           | [L2][CO5] | [5M]  |
|    | b) Explain the operation of Thermistor.                                                    | [L2][CO5] | [5M]  |
| 7  | a) With a neat sketch, explain the operation of piezo-electric transducers in detail.      | [L2][CO5] | [5M]  |
|    | b) Briefly discuss about Velocity transducers.                                             | [L2][CO5] | [5M]  |
| 8  | a) Discuss about Accelerometer.                                                            | [L2][CO5] | [5M]  |
|    | b) Explain about vibration.                                                                | [L2][CO5] | [5M]  |
| 9  | a) Discuss about Sensors and Transducers.                                                  | [L1][CO5] | [5M]  |
|    | b) How to convert linear variable displacement into electrical voltage using               | [L2][CO5] | [5M]  |
|    | transducer.                                                                                |           |       |
| 10 | Describe the operation of i) resistive transducers                                         | [L2][CO5] | [10M] |
|    | ii) capacitive transducers                                                                 |           |       |
|    | iii) Inductive transducers.                                                                |           |       |
| 11 | Explain the operation of Thermocouple.                                                     | [L2][CO5] | [10M] |

Prepared by:
1. J.JHANSI
Assistant Professor/ECE
2. DR.P.G.KUPPASWAMY
Professor/ECE
3. D.JITHENDRA REDDY
Assistant Professor/ECE